The project uses the Pi to directly solve the Rubik’s cube. The BrickPi3 takes the unsolved Rubik’s cube and the Raspberry Pi takes a picture of each side of the Rubik’s cube with the Raspberry Pi Camera. The Pi creates a text map of the color squares that shows where they are located on the cube. When it has fully mapped the cube, the Pi uses the “kociemba” python library to map out the moves needed to solve the Rubik’s cube. This information is taken by the Pi and BrickPi3 to solve the Rubik’s cube using the LEGO motors. The result: a solved Rubik’s cube. Rubiks Build It Solve It
Begin with your cube solved. Once again, you want to start off with your Rubik’s cube in its solved position. Making a fish pattern on your Rubik’s cube is simple. The end result will have swapped two edge pieces so that the remaining ones look like a fish with fins. If you hold the cube diagonally it will look like a fish swimming away from you.[7] Rubiks Build It Solve It
The centre pieces on each face, as you may have noticed from playing around with the cube, can't be moved to another spot, only rotated. So we can use this to our advantage by building around the centres. The best centre to build your first cross around is the white centre, as many guides and resources on the web start with a white face, so if you need to look up some steps and examples elsewhere, your cube will look similar to the one that is being used in other demonstrations.
Building the Rubik's Cube is pretty easy to do. It took us about 15 minutes, and the instructions were fairly easy to follow. Make sure you pay attention to where you are supposed to place the colored tiles because if you snap them on in the wrong place, you can't remove them. You'll still be able to use your Rubik's Cube, but you won't be able to follow along in the solution guide.

The project uses the Pi to directly solve the Rubik’s cube. The BrickPi3 takes the unsolved Rubik’s cube and the Raspberry Pi takes a picture of each side of the Rubik’s cube with the Raspberry Pi Camera. The Pi creates a text map of the color squares that shows where they are located on the cube. When it has fully mapped the cube, the Pi uses the “kociemba” python library to map out the moves needed to solve the Rubik’s cube. This information is taken by the Pi and BrickPi3 to solve the Rubik’s cube using the LEGO motors. The result: a solved Rubik’s cube. Rubiks Build It Solve It
There are 5 different positions your cube can be in now, one of which could be solved. The rest of them have all four corners solved, so do the required amount of U moves so that every corner is in its right place. 2 of the 4 remaining possibilities have a solved bar (as mentioned above, where all three colours on that side are the same), and the other 2 have no solved bars.
Rubik's cube is a toy puzzle designed by Erno Rubik during the mid-1970s. It is a cube-shaped device made up of smaller cube pieces with six faces having differing colors. The primary method of manufacture involves injection molding of the various component pieces, then subsequent assembly, labeling, and packaging. The cube was extremely popular during the 1980s, and at its peak between 1980 and 1983, 200 million cubes were sold world wide. Today sales continue to be over 500,000 cubes sold world wide each year. Rubiks Build It Solve It Review

Begin with your cube solved. Once again, you want to start off with your Rubik’s cube in its solved position. Making a fish pattern on your Rubik’s cube is simple. The end result will have swapped two edge pieces so that the remaining ones look like a fish with fins. If you hold the cube diagonally it will look like a fish swimming away from you.[7] Rubiks Build It Solve It


Keeping white on top, turn the cube so that a different colour face is toward you. Follow the above instructions again. Repeat with the other two faces until the white cross is complete. This step is quite intuitive; you can do it for sure but it does take a little practice. Just move the white edges to their places not messing up the ones already fixed.  
Sport, Outdoor & Furniture Kids Furniture Sand Toys, Pools & Inflatables Kids Sports & Balls Trampolines & Playgyms Blasters & Water Pistols Vehicles Hobbies & Radio Controlled Remote Control Collectible Vehicles Slot Cars & accessories Model Trains & accessories Model Kits Vehicles & Play Sets STEM STEM - Science STEM - Technology STEM - Engineering STEM - Mathematics

The Rubik's Build It Solve It kid comes with all the parts necessary to build your own Rubik's Cube! Easy "how to" instructions, plastic cube pieces and tiles (including some spares), center core pieces, metal screws, springs, and screwdriver - all organized in a handy storage tray. Once you've built your cube, turn to the "You Can Do The Rubik's Cube" booklet and learn how to solve it.
Rubik’s Build It, Solve is like the traditional Rubik’s cube, but with a twist. This cube comes with all of the tools, pieces and instructions children need in order to build a Rubik’s Cube of their own. Once this cube has been put together, there’s an instruction booklet (it’s 10-pages in length) that will guide you through the process of solving the Rubik’s Cube (finally). Here, you will learn everything from identifying the parts of the cube to solving basic puzzles. With this toy, children will be given a slow and steady introduction on how to use the cube and progress to harder challenges.
The quality of the individual parts are also inspected just after exiting the mold. Since thousands of parts are made daily, a complete inspection would be difficult. Consequently, line inspectors may randomly check the plastic parts at fixed time intervals and check to ensure they meet size, shape, and consistency specifications. This sampling method provides a good indication of the quality of the overall Rubik's cube production run. Things that are looked for include deformed parts, improperly fitted parts and inappropriate labeling. While visual inspection is the primary test method employed, more rigorous measurements may also be performed. Measuring equipment is used to check the length, width, and thickness of each part. Typically, devices such as a vernier caliper, a micrometer, or a microscope are used. Just prior to putting a cube in the packaging it may be twisted to ensure that it holds together and is in proper working order. This can be done by hand or by a turning machine. If a toy is found to be defective it is placed aside to be reworked later.
Over the next few years, Rubik worked with a manufacturer to allow production of the cube on a mass scale. After three years of development, the first cubes were available on toy store shelves in Budapest. While the cube remained popular in Hungry, the political atmosphere of the time made it difficult for it to be introduced in the United States. The two men who were most responsible for making the cube an international success were Dr. Laczi Tibor and Tom Kremer of Seven Towns Ltd., London. Seven Towns licensed the Rubik Cube invention from Professor Rubik for worldwide distribution. Dr. Tibor worked within Hungry to convince bureaucrats to allow the technology out of the country. Kremer found a United States toy maker, the Ideal Toy company, who was willing to help market the product. The product was an immediate hit, and during the 1980s, over 200 million cubes were sold. Around 1983, the frenzied popularity of the cube began to wane and sales slowed drastically. It remained in small scale production until Seven Towns took over the marketing, and licensed the Rubik Cube to the Oddzon Company for the United States market in 1995. Since that time sales have steadily increased to over 500,000 units a year.

5 After all the labeling is completed, the cubes are put in their final packaging. This can be a small box that has an instruction booklet included or a plastic blister pack with a cardboard backing. The package serves the dual purpose of protecting the Rubik's cube from damage caused by shipping and advertising the product. The Rubik's cube packages are put into cases and moved to a pallet. The pallets are then loaded on trucks and the products are shipped all over the world.


The robot will turn the cube to each face and the camera will take 6 pictures, one of each side of the Cube.  The Raspberry Pi will determine the cube configuration from the six pictures. The Cube configuration will be passed to the kociemba Python library to find an efficient solution. Finally, the robot will execute the moves to solve the Rubik’s Cube!
5 After all the labeling is completed, the cubes are put in their final packaging. This can be a small box that has an instruction booklet included or a plastic blister pack with a cardboard backing. The package serves the dual purpose of protecting the Rubik's cube from damage caused by shipping and advertising the product. The Rubik's cube packages are put into cases and moved to a pallet. The pallets are then loaded on trucks and the products are shipped all over the world. Rubiks Build It Solve It Review

The project uses the Pi to directly solve the Rubik’s cube. The BrickPi3 takes the unsolved Rubik’s cube and the Raspberry Pi takes a picture of each side of the Rubik’s cube with the Raspberry Pi Camera. The Pi creates a text map of the color squares that shows where they are located on the cube. When it has fully mapped the cube, the Pi uses the “kociemba” python library to map out the moves needed to solve the Rubik’s cube. This information is taken by the Pi and BrickPi3 to solve the Rubik’s cube using the LEGO motors. The result: a solved Rubik’s cube.
The standard Rubik's cube has sides of about 2.2 in (5.7 cm) per square. Various other sizes have also been produced such as a 1.5 in (3.8 cm) mini cube, a 0.8 in (2 cm) key chain micro cube, and a 3.5 in (9 cm) giant cube. While the standard cube is a 3 × 3 × 3 segmentation other types have also been introduced. Some of the more interesting ones include the 2 × 2 × 2 cube, the 4 × 4 × 4 cube (called Rubik's Revenge) and the 5 × 5 × 5 cube. The shape has also been varied and puzzles in the form of a tetrahedral, a pyramid, and an octahedral are among types that were produced. The Rubik's cube also led to the development of game derivatives like the Rubik's cube puzzle and the Rub it cube eraser.
When you get round to building the Rubik’s Cube, you will find it is not as hard as it appears.  The instructions are quite easy to follow and it will probably take you about fifteen minutes. When you get round to placing the colored tiles, pay attention to where they are supposed to go. Because once you snap them into place. you will not be able to remove them. Having said that. you can still use the Rubik’s Cube. What you will not be able to do is follow the instruction guide and solve the puzzle. Rubiks Build It Solve It
×