You can find assembly instructions for the BrickPi3 here. We will need to assemble the case, attach the BrickPi3, the Raspberry Pi, the Raspberry Pi Camera, add an SD Card, and add batteries.  To make the software easier to setup, Raspbian for Robots comes with most of the software you will need already setup.  You will need at least an 8 GB SD Card, and you will want to expand the disk to fit the full size of the SD Card.

Just because this kit gives you a behind-the-scenes look as to how a Rubik's Cube is made along with tips for how to solve it doesn't mean that you'll be solving it like a pro within seconds. Even the solution booklet itself says that the first step will take practice and trial by error. So this is definitely going to be more fun for kids or adults who enjoy the puzzlement of a Rubik's Cube and have the patience to build it and practice using the solving tips. But once you finally do solve it, you'll be pretty proud of yourself, and your friends and family will be impressed.

Do you remember those complicated little Rubik’s block that we would sit there trying to figure out for what seems like hours? Did any of you guys/girls ever solve them? Maybe all it takes for us to solve the “cube” would be for us to see what it’s all about. While there are many mesmerizing toys that are about to emerge into our world, today, we would like to take a close look at the Rubik’s Build It, Solve It, because we believe this is the one-way ticket to finally solving the cube!

Rubik’s Build It, Solve It. Can you recall those complex small Rubik’s cube which we’d sit there trying to work out for what seems like hours? Did any one of you guys/girls ever resolve them? Perhaps all it requires us to fix the “block” is for us to find out exactly what it’s about. When there are lots of mesmerizing toys which are just about to emerge into our planet, now, we’d love to have a good look at the Rubik’s Build It, Solve It, since we think this is the one time ticket to eventually solving the block!
Your goal is to have all four edges matching their centres. If you have this, then the cross is solved. If you have only two, then you could have one of two cases. Either the two matching edges are adjacent (next to each other) or opposite each other. If they are adjacent, hold the cube so that the two solved pieces are facing the front and left of the cube (shown in the left picture), then perform: Rubiks Build It Solve It
Keeping white on top, turn the cube so that a different colour face is toward you. Follow the above instructions again. Repeat with the other two faces until the white cross is complete. This step is quite intuitive; you can do it for sure but it does take a little practice. Just move the white edges to their places not messing up the ones already fixed.  
The centre pieces on each face, as you may have noticed from playing around with the cube, can't be moved to another spot, only rotated. So we can use this to our advantage by building around the centres. The best centre to build your first cross around is the white centre, as many guides and resources on the web start with a white face, so if you need to look up some steps and examples elsewhere, your cube will look similar to the one that is being used in other demonstrations.
If you're still reading, congratulations on not being put off by the time requirements! The first thing you are going to need to know about solving the cube is how the turns you make can be represented by letters. Later on in this guide, you're going to need a few algorithms. These are combinations of moves that rotate pieces or just move them around to get them where you want them. These algorithms are written using this notation, so you can always come back to this section if you've forgotten by the time we need them. Rubiks Build It Solve It Instructions
The project uses the Pi to directly solve the Rubik’s cube. The BrickPi3 takes the unsolved Rubik’s cube and the Raspberry Pi takes a picture of each side of the Rubik’s cube with the Raspberry Pi Camera. The Pi creates a text map of the color squares that shows where they are located on the cube. When it has fully mapped the cube, the Pi uses the “kociemba” python library to map out the moves needed to solve the Rubik’s cube. This information is taken by the Pi and BrickPi3 to solve the Rubik’s cube using the LEGO motors. The result: a solved Rubik’s cube. Rubiks Build It Solve It

If you have 2 adjacent well permuted corners- turn the upper face once clockwise (U). That move will reposition the corners into a situation which only one well permuted corner will remain while the other three corners needed to be rotated counter-clockwise. Now just execute the algorithm above, and by this single execution you actually completed this step (remember to execute this algorithm from the correct angle – when the well permuted corner is on the back right. see algorithm image above). Rubiks Build It Solve It Instructions
The robot will turn the cube to each face and the camera will take 6 pictures, one of each side of the Cube.  The Raspberry Pi will determine the cube configuration from the six pictures. The Cube configuration will be passed to the kociemba Python library to find an efficient solution. Finally, the robot will execute the moves to solve the Rubik’s Cube!
2 After the cube parts are ejected from the mold, they are dropped into container bins and hand inspected to ensure that no significantly damaged parts are used. The waste sprue material is set aside to be reused or scrapped. Waste material can be ground up and melted again to make new parts, however reground material can degrade and cause poor quality parts. Rubik's cubes are always made from virgin material and never use reground waste plastic.
For decorative purposes, a colorant is typically added to the plastic. The pieces of a Rubik's cube are typically black. During production, colored stickers are put on the outside of the cube to denote the color of a side. The plastics that are used during production are supplied to the manufacturer in a pellet form complete with the filler and colorants. These pellets can then be loaded into the molding machines directly.
Using the LEGO Camera support, attach the camera.  The small black lens of the camera should fit between the two LEGO beam supports.  Secure the camera in place to the LEGO supports with some electrical tape.  This is a good time to make sure that the camera is position to be able to capture the entire Rubik’s cube.  You can take a test picture with the raspistill command
The most important part in the manufacture of a Rubik's cube is designing the mold for the various pieces. A mold is a cavity carved into steel that has the inverse shape of the part that it will produce. When liquid plastic is put into the mold, it takes on the mold's shape when it cools. The creation of the mold is extremely precise. The cavity is highly polished to remove any flaws on the surface. Any flaw would be reproduced on each of the millions of pieces that the mold will produce. In the manufacture of the cube parts, a two piece mold is typically employed. During production, the two mold pieces are brought together to form the plastic part and then opened to release it. The tool includes ejector pins that release the molded parts from the tools as it opens. All the parts are molded with auto gating tools that automatically remove the parts from the sprue as it is ejected. The molds are also produced with a slight taper, called release angle, which aids in removal. Finally, when molds are designed, they are slightly bigger than the pieces that they ultimately will produce. This is because as the plastics cool, they shrink. Different plastics will have a different shrink rate, and each tool must be specifically designed for the material that will be used.

Rubik’s Build It, Solve It is similar to the conventional Rubik’s block, but with a twist. This block includes each the tools, bits and directions kids need to be able to construct a Rubik’s Cube of the own. After this block was assembled together, there’s an education booklet (it’s’s 10-pages in duration) which will direct you through the procedure for solving the Rubik’s Cube (eventually). Here, you’ll find everything from identifying the areas of the block to solving fundamental puzzles. With this toy, kids will be provided a slow and continuous introduction about the best way best to use the block and progress to harder struggles.

If you have 2 adjacent well permuted corners- turn the upper face once clockwise (U). That move will reposition the corners into a situation which only one well permuted corner will remain while the other three corners needed to be rotated counter-clockwise. Now just execute the algorithm above, and by this single execution you actually completed this step (remember to execute this algorithm from the correct angle – when the well permuted corner is on the back right. see algorithm image above).
product description Blow your mom's mind when you build and solve the Rubik's Build It Solve It Puzzle. With all of the parts necessary for construction along with easy to follow instructions, you can learn how to solve it from the inside out. Put it together, twist it up and use your new found knowledge to make short work of one of life's most beloved puzzles - Rubik's®.
Erno Rubik, an architect and professor at the University of Budapest developed the first working prototype of the Rubik's cube in 1974. He received a Hungarian patent in 1975. Apparently, it was also independently designed by Terutoshi Ishige, an engineer from Japan, who received a Japanese patent in 1976. Professor Rubik created the cube as a teaching aid for his students to help them recognize three-dimensional spatial relationships. When he showed the working prototype to his students, it was an immediate hit.

Do you remember those complicated little Rubik’s block that we would sit there trying to figure out for what seems like hours? Did any of you guys/girls ever solve them? Maybe all it takes for us to solve the “cube” would be for us to see what it’s all about. While there are many mesmerizing toys that are about to emerge into our world, today, we would like to take a close look at the Rubik’s Build It, Solve It, because we believe this is the one-way ticket to finally solving the cube! Rubix Building Solutions

If you're still reading, congratulations on not being put off by the time requirements! The first thing you are going to need to know about solving the cube is how the turns you make can be represented by letters. Later on in this guide, you're going to need a few algorithms. These are combinations of moves that rotate pieces or just move them around to get them where you want them. These algorithms are written using this notation, so you can always come back to this section if you've forgotten by the time we need them. Rubiks Build It Solve It Instructions


This is our review about the Rubik’s Build It Solve It  building kit. Did you ever have one of those Rubik cubes, or do you still have one. Do you remember how complicated they were , you would try for hours and even then you could not work it out. Did any one of you ever solve them, I think I remember someone on utube showing how to do it years later. What if you knew what the Rubik’s Build It, Solve It cube was all about, would that help. Even though there are quite a number of  mesmerizing toys in our world today. It might be quite a revelation to take a closer look  at the Rubik’s Build It Solve It building kit. Because we believe that this game might be the clue to solving it. If you have already decided to buy this, check it out here at amazon.com. Rubiks Build It Solve It Instructions

The standard Rubik's cube has sides of about 2.2 in (5.7 cm) per square. Various other sizes have also been produced such as a 1.5 in (3.8 cm) mini cube, a 0.8 in (2 cm) key chain micro cube, and a 3.5 in (9 cm) giant cube. While the standard cube is a 3 × 3 × 3 segmentation other types have also been introduced. Some of the more interesting ones include the 2 × 2 × 2 cube, the 4 × 4 × 4 cube (called Rubik's Revenge) and the 5 × 5 × 5 cube. The shape has also been varied and puzzles in the form of a tetrahedral, a pyramid, and an octahedral are among types that were produced. The Rubik's cube also led to the development of game derivatives like the Rubik's cube puzzle and the Rub it cube eraser.

Since the center pieces cannot be moved relatively to each other it's important to solve the edge pieces correctly in relation to each other. For example, when solving the white in our case- the green center piece is to the left of the red center piece, therefore the green-white edge piece should to be solved to the left of the red-white edge piece (see image).


Whether you complete all 6 stages or 1, be sure to tell your teacher about this program so all your classmates can solve with you! Teachers from all over the country use our program, at no cost, to teach their classes not only to solve, but math, art, science, and more. Hundreds of schools compete at solving cubes as a group and classes create really cool mosaic designs too. We even have ongoing mosaic contests each year. So check out our site and learn how you can do even more with a Rubik's® Cube!
The Rubik’s cube has recently begun making a comeback. Invented in 1974, it is the world’s best-selling toy. But solving them takes thought, effort, and skill . . . so why not let a robot do it? In this project, we take a Raspberry Pi, a BrickPi, and a set of LEGO Mindstorms and build a Rubik’s cube solving robot. Simply place an unsolved Rubik’s cube in the solver, run the python program, and your Rubik’s cube is solved!

Build A Rubix Cube


The Rubik's Build It Solve It kid comes with all the parts necessary to build your own Rubik's Cube! Easy "how to" instructions, plastic cube pieces and tiles (including some spares), center core pieces, metal screws, springs, and screwdriver - all organized in a handy storage tray. Once you've built your cube, turn to the "You Can Do The Rubik's Cube" booklet and learn how to solve it.
product description Blow your mom's mind when you build and solve the Rubik's Build It Solve It Puzzle. With all of the parts necessary for construction along with easy to follow instructions, you can learn how to solve it from the inside out. Put it together, twist it up and use your new found knowledge to make short work of one of life's most beloved puzzles - Rubik's®.
Simply put the 1x1x3 is a pseudo puzzle, It fills a gap in the collection but its not exactly complicated to solve. The way this puzzle was made was by using two centres and a core of a QiYi Sail. As these parts already spin like a 1x1x3 should all I had to do was make these parts into cubies by adding some apoxie sculpt and sanding them smooth. This puzzle was made in an afternoon and stickered the following morning while I was also building my 'Mefferts bandage cube'.
Repeat the process. Turn back to your blue side and repeat the turns on opposite sides. Then, return once more to the red side and turn the opposite sides in opposite directions. And last, return once more to the blue side and turn the opposite sides in opposite directions. When you finish, you should have a staircase-like zig-zag across four sides of your Rubik’s cube.[4] Rubiks Build It Solve It Review
×