When you get round to building the Rubik’s Cube, you will find it is not as hard as it appears.  The instructions are quite easy to follow and it will probably take you about fifteen minutes. When you get round to placing the colored tiles, pay attention to where they are supposed to go. Because once you snap them into place. you will not be able to remove them. Having said that. you can still use the Rubik’s Cube. What you will not be able to do is follow the instruction guide and solve the puzzle.
You can find assembly instructions for the BrickPi3 here. We will need to assemble the case, attach the BrickPi3, the Raspberry Pi, the Raspberry Pi Camera, add an SD Card, and add batteries.  To make the software easier to setup, Raspbian for Robots comes with most of the software you will need already setup.  You will need at least an 8 GB SD Card, and you will want to expand the disk to fit the full size of the SD Card. Rubix Builders
When you eventually get the desired position, there are two slightly different variations of it. For this, we need to look at the front of the cube. The yellow corner facing the front can be  in two positions: Either facing the front, or facing the right. In the first image, it is facing the front. This shows you have Sune. To solve it, just do the above algorithm one more time, and you should have oriented all of the top layer.
Since the center pieces cannot be moved relatively to each other it's important to solve the edge pieces correctly in relation to each other. For example, when solving the white in our case- the green center piece is to the left of the red center piece, therefore the green-white edge piece should to be solved to the left of the red-white edge piece (see image).
Rubik's cube is a toy puzzle designed by Erno Rubik during the mid-1970s. It is a cube-shaped device made up of smaller cube pieces with six faces having differing colors. The primary method of manufacture involves injection molding of the various component pieces, then subsequent assembly, labeling, and packaging. The cube was extremely popular during the 1980s, and at its peak between 1980 and 1983, 200 million cubes were sold world wide. Today sales continue to be over 500,000 cubes sold world wide each year.
Simply put the 1x1x3 is a pseudo puzzle, It fills a gap in the collection but its not exactly complicated to solve. The way this puzzle was made was by using two centres and a core of a QiYi Sail. As these parts already spin like a 1x1x3 should all I had to do was make these parts into cubies by adding some apoxie sculpt and sanding them smooth. This puzzle was made in an afternoon and stickered the following morning while I was also building my 'Mefferts bandage cube'. 

Rubiks Build It Solve It

Begin with your cube solved. Once again, you want to start off with your Rubik’s cube in its solved position. Making a fish pattern on your Rubik’s cube is simple. The end result will have swapped two edge pieces so that the remaining ones look like a fish with fins. If you hold the cube diagonally it will look like a fish swimming away from you.[7]
The project uses the Pi to directly solve the Rubik’s cube. The BrickPi3 takes the unsolved Rubik’s cube and the Raspberry Pi takes a picture of each side of the Rubik’s cube with the Raspberry Pi Camera. The Pi creates a text map of the color squares that shows where they are located on the cube. When it has fully mapped the cube, the Pi uses the “kociemba” python library to map out the moves needed to solve the Rubik’s cube. This information is taken by the Pi and BrickPi3 to solve the Rubik’s cube using the LEGO motors. The result: a solved Rubik’s cube.
The commercial cube is composed of six fixed cubes, eight movable cubes on the corners and 12 movable cubes on the edges. Each cube is one of six colors. The Rubik's cube has red, yellow, blue, green, white, and orange colors. In its solved state, each color is on only one face. When the cube is rotated, the edges and corners move and the cube becomes scrambled. The challenge of the puzzle is to restore each cube to its original position. The cube is extremely challenging because there are slightly more than 43 quintillion (4.3 × 10 19 ) possible arrangements, and only one solution.
Do you remember those complicated little Rubik’s block that we would sit there trying to figure out for what seems like hours? Did any of you guys/girls ever solve them? Maybe all it takes for us to solve the “cube” would be for us to see what it’s all about. While there are many mesmerizing toys that are about to emerge into our world, today, we would like to take a close look at the Rubik’s Build It, Solve It, because we believe this is the one-way ticket to finally solving the cube!

The Rubik’s cube has recently begun making a comeback. Invented in 1974, it is the world’s best-selling toy. But solving them takes thought, effort, and skill . . . so why not let a robot do it? In this project, we take a Raspberry Pi, a BrickPi, and a set of LEGO Mindstorms and build a Rubik’s cube solving robot. Simply place an unsolved Rubik’s cube in the solver, run the python program, and your Rubik’s cube is solved!

Build A Rubix Cube

Building the Rubik's Cube is pretty easy to do. It took us about 15 minutes, and the instructions were fairly easy to follow. Make sure you pay attention to where you are supposed to place the colored tiles because if you snap them on in the wrong place, you can't remove them. You'll still be able to use your Rubik's Cube, but you won't be able to follow along in the solution guide.
Keeping white on top, turn the cube so that a different colour face is toward you. Follow the above instructions again. Repeat with the other two faces until the white cross is complete. This step is quite intuitive; you can do it for sure but it does take a little practice. Just move the white edges to their places not messing up the ones already fixed.  

Since the center pieces cannot be moved relatively to each other it's important to solve the edge pieces correctly in relation to each other. For example, when solving the white in our case- the green center piece is to the left of the red center piece, therefore the green-white edge piece should to be solved to the left of the red-white edge piece (see image).
Rubik’s Build It, Solve It. Can you recall those complex small Rubik’s cube which we’d sit there trying to work out for what seems like hours? Did any one of you guys/girls ever resolve them? Perhaps all it requires us to fix the “block” is for us to find out exactly what it’s about. When there are lots of mesmerizing toys which are just about to emerge into our planet, now, we’d love to have a good look at the Rubik’s Build It, Solve It, since we think this is the one time ticket to eventually solving the block!
Rubik’s Build It, Solve It is similar to the conventional Rubik’s block, but with a twist. This block includes each the tools, bits and directions kids need to be able to construct a Rubik’s Cube of the own. After this block was assembled together, there’s an education booklet (it’s’s 10-pages in duration) which will direct you through the procedure for solving the Rubik’s Cube (eventually). Here, you’ll find everything from identifying the areas of the block to solving fundamental puzzles. With this toy, kids will be provided a slow and continuous introduction about the best way best to use the block and progress to harder struggles.
If there are no more edges left on the top layer, then they are probably either inserted in the right place but flipped, or inserted in the wrong place. To get an edge out of somewhere it shouldn't be, just insert one of the yellow edges into that slot. This should get the edge out and on the top layer, ready for you to use the above instructions to insert correctly. Rubix Build